GRAPH OF LINEAR TRANSFORMATIONS OVER \mathbb{R}

AYMAN BADAWI AND YASMINE EL-ASHI

Abstract

In this paper, we study a connection between graph theory and linear transformations of finite dimensional vector spaces over \mathbb{R} (the set of all real numbers). Let R^{m}, R^{n} be finite vector spaces over R, and let L be the set of all non-trivial linear transformations from R^{m} into R^{n}. An equivalence relation \sim is defined on L such that two elements $f, k \in L$ are equivalent, $f \sim k$, if and only if $\operatorname{ker}(f)=\operatorname{ker}(k)$. Let $m, n \geq 1$ be positive integers and $V_{m, n}$ be the set of all equivalence classes of \sim. We define a new graph, $G_{m, n}$, to be the undirected graph with vertex set equals to $V_{m, n}$, such that two vertices, $[x],[y] \in V_{m, n}$ are adjacent if and only if $\operatorname{ker}(x) \cap \operatorname{ker}(y) \neq 0$. The relationship between the connectivity of the graph $G_{m, n}$ and the values of m and n has been investigated. We determine the values of m and n so that $G_{m, n}$ is a complete graph. Also, we determine the diameter and the girth of $G_{m, n}$.

1. Introduction

Let R be a commutative ring with $1 \neq 0$. Recently, there has been considerable attention in the literature to associating graphs with commutative rings (and other algebraic structures), as well as, studying the interplay between ring-theoretic and graph-theoretic properties; see the survey articles [11], [10], [38] and [45]. In particular, as in [17], the zero-divisor graph of R is the (simple) graph $\Gamma(R)$ with vertices $Z(R) \backslash\{0\}$, and distinct vertices x and y are adjacent if and only if $x y=0$. This concept is due to Beck [28], who let all the elements of R be vertices and was mainly interested in coloring. The zero-divisor graph of a ring R has been studied extensively by many authors, for example see([2]-[9], [12], [21]-[22], [37]-[43], [46]-[53], [57]). David. F. Anderson and the first-named author [13] introduced the total graph of R, denoted by $T(\Gamma(R))$. We recall from [13] that the total graph of a commutative ring R is the (simple) graph $\Gamma(R)$ with vertices R, and distinct vertices x and y are adjacent if and only if $x+y \in Z(R)$. The total graph (as in [13]) has been investigated in [8], [7], [6], [5], [45], [47], [51], [34] and [55]; and several variants of the total graph have been studied in [4], [14], [15], [16], [20], [27], [33], [30], [31], [32], [35], [36], and [44].

Let $a \in Z(R)$ and let $a n n_{R}(a)=\{r \in R \mid r a=0\}$. In 2014, A. Badawi [26] introduced the annihilator graph of R. We recall from [26] that the annihilator graph of R is the (undirected) graph $A G(R)$ with vertices $Z(R)^{*}=Z(R) \backslash\{0\}$, and two distinct vertices x and y are adjacent if and only if $a n n_{R}(x y) \neq a n n_{R}(x) \cup$ $a n n_{R}(y)$. See the survey article [23]. It follows that each edge (path) of the classical zero-divisor of R is an edge (path) of $A G(R)$. For further investigations of $A G(R)$,

[^0]see [19], [50], and [56]. In 2015, A. Badawi, investigated the total dot product graph of R [25]. In this case $R=A \times A \times \cdots \times A$ (n times), where A is a commutative ring with nonzero identity, and $1 \leq n<\infty$ is an integer. The total dot product graph of R is the (undirected) graph denoted by $T D(R)$, with vertices $R^{*}=R \backslash\{(0,0, \ldots 0)\}$. Two distinct vertices are adjacent if and only if $x \cdot y=0 \in A$, where $x \cdot y$ denote the normal dot product of x and y. The zero-divisor dot product graph of R is the induced subgraph $Z D(R)$ of $T D(R)$ with vertices $Z(R)^{*}=Z(R) \backslash\{(0,0, \ldots, 0)\}$. It follows that each edge (path) of the classical zero-divisor graph $\Gamma(R)$ is an edge (path) of $Z D(R)$. In [25], both graphs $T D(R)$ and $Z D(R)$ are studied. The total dot product graph was recently further investigated in [1].

Other types of graphs attached to groups and rings were studied (for example) in [6], [8], [27], [37], [39]-[43], and [44].

Let G be a graph. Two vertices v_{1}, v_{2} of G are said to be adjacent in G if v_{1}, v_{2} are connected by an edge of G and we write $v_{1}-v_{2}$. For vertices x and y of G, we define $\mathrm{d}(x, y)$ to be the length of a shortest path from x to $y(\mathrm{~d}(x, x)=0$ and $\mathrm{d}(x, y)=\infty$ if there is no path). Then the diameter of G is $\operatorname{diam}(G)=\sup \{$ $\mathrm{d}(x, y) \mid x$ and y are vertices of $G\}$. The girth of G, denoted by $\operatorname{gr}(G)$, is the length of a shortest cycle in $G(\operatorname{gr}(G)=\infty$ if G contains no cycles).

We say G is connected if there is a path in G from u to v for every $u, v \in V$. Therefore, a graph is said to be disconnected, if there exist at least two vertices $u, v \in V$ that are not joined by a path. We say that G is totally disconnected if no two vertices of G are adjacent. We denote the complete graph on n vertices by K_{n}, recall that a graph G is called complete if every two vertices of G are adjacent.

In this paper, we introduce a connection between graph theory and linear transformations of finite dimensional vector spaces over \mathbb{R} (the ring of all real numbers). Let U and W be finite dimensional vector spaces over \mathbb{R}, such that $m=\operatorname{dim}(U)$ and $n=\operatorname{dim}(W)$. Since every finite dimensional vector space over \mathbb{R} with dimension k is isomorphic to \mathbb{R}^{k}, we conclude that U is isomorphic to \mathbb{R}^{m} and W is isomorphic to \mathbb{R}^{n}. Let $m, n \geq 1$ be positive integers and $L=\left\{t: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \mid t\right.$ is a nontrivial linear transformation from \mathbb{R}^{m} into $\left.\mathbb{R}^{n}\right\}$. If $s, t \in L$, then we say that s is equivalent to t, and we write $s \sim t$ if and only if $\operatorname{Ker}(s)=\operatorname{Ker}(t)$. Clearly, \sim is an equivalence relation on L. For each $t \in L$, the set $[t]=\{s \in L \mid s \sim t\}$ is called the equivalence class of t. Let $V_{m, n}$ be the set of all equivalence classes of \sim. For positive integers $m, n \geq 1$, let $G_{m, n}$ be a simple undirected graph with vertex set $V_{m, n}$ such that two distinct vertices $[f],[k] \in V_{m, n}$ are adjacent if and only if $\operatorname{Ker}(f) \cap \operatorname{Ker}(k) \neq\{(0, \cdots, 0)\} \subset \mathbb{R}^{m}$.

2. Results

Remark 2.1. If a graph G has one vertex, then we say that G is totally disconnected. Note that some authors state that such graph is connected.

We have the following result.
Theorem 2.2. The undirected graph $G_{m, 1}$ is totally disconnected if and only if $m=1$ or $m=2$. Furthermore, if $m=1$, then $V_{1,1}=\{[t]\}$ for some $t \in L$.

Proof. Assume $m=1$. Let $[t] \in V_{1,1}$. Since $t \in L$ (i.e., t is a nontrivial linear transformation from \mathbb{R} into \mathbb{R}), we conclude that $\operatorname{dim}(\operatorname{Range}(t))=1$. Since $\operatorname{dim}(\operatorname{Ker}(t))+\operatorname{dim}(\operatorname{Range}(t))=m=1$ and $\operatorname{dim}(\operatorname{Range}(t))=1$, we conclude that
$\operatorname{Ker}(t)=\{0\}$. Thus $f \in[t]$ for every $f \in L$. Hence $V_{1,1}=\{[t]\}$ for some $t \in L$. Thus $G_{1,1}$ is totally disconnected by Remark 2.1.

Assume $m=2$. Let $[t],[f] \in V_{2,1}$ be two distinct vertices. Since $t, f \in L$ (i.e., t, f are nontrivial linear transformations from \mathbb{R}^{2} into \mathbb{R}), we conclude that $\operatorname{dim}(\operatorname{Range}(t))=\operatorname{dim}(\operatorname{Range}(t))=1$. Since $\operatorname{dim}(\operatorname{Ker}(t))+\operatorname{dim}(\operatorname{Range}(t))=$ $m=2$ and $\operatorname{dim}(\operatorname{Range}(t))=1$, we conclude that $\operatorname{dim}(\operatorname{Ker}(t))=1$. Similarly, $\operatorname{dim}(\operatorname{Ker}(f))=1$. Since $t, f \in L$, and $\operatorname{dim}(\operatorname{Ker}(t))=\operatorname{dim}(\operatorname{Ker}(f))=1$, we conclude that $\operatorname{Ker}(t)$ and $\operatorname{Ker}(f)$ are distinct lines passing through the origin $(0,0)$. Thus $\operatorname{Ker}(t) \cap \operatorname{Ker}(f)=\{(0,0)\}$. Hence $[t],[f]$ are nonadjacent. Thus $G_{2,1}$ is totally disconnected.

Now assume $m>2$. We show that $G_{m, 1}$ is connected. Let, $[t],[w] \in V_{m, 1}$ be two distinct vertices. We show that $\operatorname{ker}(f) \cap \operatorname{ker}(k) \neq\{(0, \cdots, 0)\}$ for some $f \in[t]$ and $k \in[w]$. Let \mathbf{M}_{f} be the standard $1 \times m$ matrix representation of f for some $f \in[t] \in V_{m, 1}$ and \mathbf{M}_{k} be the standard $1 \times m$ matrix representation of k for some $k \in[w] \in V_{m, 1}$. By hypothesis, \mathbf{M}_{f} is not row-equivalent to \mathbf{M}_{k}. Say, $\mathbf{M}_{f}=\left[\begin{array}{llll}f_{11} & f_{12} & \cdots & f_{1 m}\end{array}\right]$ and $\mathbf{M}_{k}=\left[\begin{array}{llll}k_{11} & k_{12} & \cdots & k_{1 m}\end{array}\right]$

Let, $\mathbf{M}_{f k}=\left[\begin{array}{l}\mathbf{M}_{f} \\ \mathbf{M}_{k}\end{array}\right]$ and consider the system, $\mathbf{M}_{f k} \mathbf{x}=\mathbf{0}$, that is,

$$
\left[\begin{array}{llll}
f_{11} & f_{12} & \cdots & f_{1 m} \\
k_{11} & k_{12} & \cdots & k_{1 m}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Since, $m>2$, the number of equations $<$ the number of unknown variables. Hence, the system $\mathbf{M}_{f k} \mathbf{x}=\mathbf{0}$ has infinitely many solutions. Therefore, $\operatorname{ker}(f) \cap$ $\operatorname{ker}(k) \neq \mathbf{0}$, that is, the vertices $[t]$ and $[w]$ are adjacent. Further, since $[t],[w]$ were chosen randomly, we conclude that the graph $G_{m, 1}$ is complete for $m>2$.

Theorem 2.3. For $m=1$ or $m=2$, the undirected graph $G_{2, n}$ is totally disconnected for every positive integer $n \geq 1$.

Proof. Assume $m=1$ and $n \geq 1$ be a positive integer. Then by the proof of Theorem 2.2, we conclude that $V_{1, n}=\{[t]\}$ for some $t \in L$. Hence $V_{1, n}$ is totally disconnected by Remark 2.1.

Assume $m=2$, and let $[t],[w] \in V$ be two distinct vertices. We want to show $\operatorname{ker}(f) \cap \operatorname{ker}(k)=0$ for some $f \in[t]$ and $k \in[w]$. We may assume that neither $\operatorname{Ker}(f)=0$ nor $\operatorname{Ker}(k)=0$. Hence $\operatorname{dim}(\operatorname{Ker}(f))=\operatorname{dim}(\operatorname{Ker}(k))=1$. Thus $\operatorname{Ker}(f) \cap \operatorname{Ker}(k)=\{(0,0)\}$. Since $[f],[k]$ were chosen randomly, we conclude that the graph $G_{2, n}$ is totally disconnected for $m=2$.

Theorem 2.4. The graph $G_{m, n}$ is complete if and only if $m \geq 2 n+1$.
Proof. Let $[t],[w] \in V$ such that $\operatorname{Ker}(f) \neq 0$ and $\operatorname{Ker}(k) \neq 0$ for some $f \in[t]$ and $k \in[w]$. Let \mathbf{M}_{f} be the standard $n \times m$ matrix representation of $[f], \mathbf{M}_{k}$ be the standard $n \times m$ matrix representation of $[k]$, and let $\mathbf{M}_{f k}=\left[\begin{array}{l}\mathbf{M}_{f} \\ \mathbf{M}_{k}\end{array}\right]$

Assume, $\left(x_{1}, x_{2}, \cdots, x_{m}\right) \in \mathbf{R}^{m}$ is a solution to $\mathbf{M}_{f k} \mathbf{x}=0$, that is,

$$
\left[\begin{array}{c}
\mathbf{M}_{f} \\
\mathbf{M}_{k}
\end{array}\right]_{2 n \times m}\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]_{m \times 1}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]_{2 n \times 1}
$$

Let $r=\operatorname{rank}\left(\mathbf{M}_{f k}\right)$.
Assume $m \geq 2 n+1$. We show $\operatorname{ker}(f) \cap \operatorname{ker}(k) \neq 0$. Since $r \leq 2 n$ and $m \geq 2 n+1$, we have number of equations $<$ number of unknown variables. Hence, the system $\mathbf{M}_{f k} \mathbf{x}=0$ has infinitely many solutions, or null $\left(\mathbf{M}_{f k}\right) \neq 0$. Therefore, $\operatorname{ker}(f) \cap \operatorname{ker}(k) \neq 0$, that is the vertices $[t]$ and $[w]$ are adjacent. Since $[t]$ and $[w]$ are chosen randomly, we conclude that the graph $G_{m, n}$ is complete for $m \geq 2 n+1$.

Conversaly, assume that $G_{m, n}$ is complete. We show that $m \geq 2 n+1$. Suppose that $m<2 n+1$. We show that $G_{m, n}$ is not complete. Let $[t],[w] \in V$ such that $\operatorname{Ker}(f) \neq 0$ and $\operatorname{Ker}(k) \neq 0$ for some $f \in[t]$ and $k \in[w]$.

Case I: Suppose $r=m$.
We conclude that $\mathbf{M}_{f k}$ has m independent rows, say $R_{1}, R_{2}, \cdots, R_{m}$.
Consider the system,

$$
\left[\begin{array}{c}
R_{1} \\
R_{2} \\
\vdots \\
R_{m}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Since $\left[\begin{array}{llll}R_{1} & R_{2} & \cdots & R_{m}\end{array}\right]^{T}$ is an invertible $m \times m$ matrix, we have
$\operatorname{null}\left(\left[\begin{array}{llll}R_{1} & R_{2} & \cdots & R_{m}\end{array}\right]\right)^{T}=(0,0, \cdots, 0)$. Thus $\operatorname{ker}(t) \cap \operatorname{ker}(w)=0$. Hence the vertices $[t]$ and $[w]$ are nonadjacent

Case II: Suppose $r<m$. Thus we have the following system:

$$
\left[\begin{array}{c}
R_{1} \\
R_{2} \\
\vdots \\
R_{r}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Since number of equations $<$ number of unknown variables, we conclude that $\operatorname{null}\left(\left[\begin{array}{llll}R_{1} & R_{2} & \cdots & R_{r}\end{array}\right]^{T}\right) \neq(0,0, \cdots, 0)$. This implies $\operatorname{ker}(f) \cap \operatorname{ker}(k) \neq 0$. Hence the vertices $[t]$ and $[w]$ are adjacent.

Since the vertices $[t]$ and $[w]$ can either be adjacent or nonadjacent, we conclude that the graph $G_{m, n}$ is not complete for every $1 \leq m<2 n+1$.

Theorem 2.5. Consider the undirected graph $G_{m, n}$. Assume $m \leq n$ and $m \neq 1$ or $m \neq 2$. Then $G_{m, n}$ is connected and $\operatorname{diam}\left(G_{m, n}\right)=2$.
Proof. Let $[t],[w] \in V$ such that $[t]$ and $[w]$ are nonadjacent. Choose $f \in[t]$ and $k \in[w]$. Then $\operatorname{rank}\left(M_{f}\right) \neq m$ and $\operatorname{rank}\left(M_{k}\right) \neq m$, where M_{f} and M_{k} are the standard matrix representations of f and k, with size $n \times m$.

Assume $\operatorname{rank}\left(M_{f}\right)=m-i$, where $i \in \mathbf{N}, i \neq 1$, and $\operatorname{rank}\left(M_{k}\right)=m-j$, where $j \in \mathbf{N}, j \neq 1$. Then choose any non-zero row from M_{f} or M_{k}, say Y, to form the $n \times m$ matrix M_{d}, where:

$$
M_{d}=\left[\begin{array}{c}
Y \\
0 \\
\vdots \\
0
\end{array}\right]
$$

is the standard matrix representation of some $d \in[h] \in V_{m, n}$, such that $[t]-[h]-[w]$.
Assume that $\operatorname{rank}\left(M_{f}\right)=m-1$ and $\operatorname{rank}\left(M_{k}\right)=m-1$. Then M_{f} has $m-1$ independent rows, $R_{1}, R_{2}, \ldots, R_{m-1}$. Since $[t]$ and $[w]$ are nonadjacent, M_{k} has one row say R such that, $\left\{R_{1}, R_{2}, \ldots, R_{m-1}, R\right\}$ is an independent set which forms a basis for \mathbf{R}^{m}. Let $K \neq R$ be a non-zero row in M_{k}. Hence $K \in \operatorname{rowspace}\left(M_{k}\right)$. Since $K \in \mathbf{R}^{m}$, we have:

$$
K=c_{1} R_{1}+c_{2} R_{2}+\cdots+c_{m-1} R_{m-1}+c_{m} R
$$

Let $Y=K-c_{m} R$. Thus $Y \in \operatorname{rowspace}\left(M_{k}\right)$, (since both K and $c_{m} R$ are \in $\left.\operatorname{rowspace}\left(M_{k}\right)\right)$, and $Y \in \operatorname{rowspace}\left(M_{f}\right)$. Let $M_{d}=\left[\begin{array}{c}Y \\ 0 \\ \vdots \\ 0\end{array}\right]_{n \times m}$, be the standard matrix representation of some $d \in[h] \in V_{m, n}$. Since $Y \in \operatorname{rowspace}\left(M_{f}\right), Y$ becomes a zero row through row operations using the rows in M_{f}. Thus null $\left(M_{f d}\right) \neq 0$, since $\operatorname{rank}\left(M_{f d}\right)=m-1$. Hence $\operatorname{ker}(f) \cap \operatorname{ker}(d) \neq 0$. Hence $[t],[h]$ are connected by an edge. Similarly, since $Y \in \operatorname{rowspace}\left(M_{k}\right), Y$ becomes a zero row through row operations using the rows in M_{k}. Thus null $\left(M_{k d}\right) \neq 0$, since rank $\left(M_{k d}\right)=m-1$. Hence $\operatorname{ker}(d) \cap \operatorname{ker}(k) \neq 0$. Thus $[h]$ and $[w]$ are adjacent. Therefore, we have $[t]-[h]-[w]$.

Example 2.6. Suppose $m=3$ and $n=4$. So we are considering the graph $G\left([t]: \mathbf{R}^{3} \rightarrow \mathbf{R}^{4}\right)$, where $m \leq n$, and $m \neq 1$ or $m \neq 2$, as given in Theorem 2.5. Let $[T],[L] \in V$, such that $[T]$ and $[L]$ are not adjacent $\left(\operatorname{ker}(T) \cap \operatorname{ker}(L)=0_{m=3}\right)$, and $[T] \neq 0,[L] \neq 0$. Let $f \in[T]$, and $k \in[L]$. Since $[T]$ and $[L]$ are non-trivial vertices, then $\operatorname{rank}\left(M_{f}\right) \neq m$ and $\operatorname{rank}\left(M_{k}\right) \neq m$, where M_{f} and M_{k} are the standard matrix representations of f and k.
Suppose,

$$
M_{f}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]_{4 \times 3}, M_{k}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]_{4 \times 3}
$$

Let $M_{f k}=\left[\begin{array}{l}M_{f} \\ M_{k}\end{array}\right]_{8 \times 3}$
It can be easily seen that $\operatorname{rank}\left(M_{f k}\right)=3$, which implies that null $\left(M_{f k}\right)=0$. Therefore, $\operatorname{ker}(f) \cap \operatorname{ker}(k)=0$, that is the vertices $[T]$ and $[L]$ are not adjacent. We have:
$\operatorname{rank}\left(M_{f}\right)=2=3-1=m-1$, and $\operatorname{rank}\left(M_{k}\right)=2=3-1=m-1$.

Then M_{f} has 2 independent rows R_{1} and R_{2}, such that $R_{1}=\left[\begin{array}{ccc}1 & 0 & 0\end{array}\right]$ and $R_{2}=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$. The vertices $[T]$ and $[L]$ are not adjacent, thus M_{k} has one row R, such that $\left\{R_{1}, R_{2}, R\right\}$ are independent and form a basis for \mathbf{R}^{m}, where $m=3$. In this example, $R=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$. Let $K \neq R$ be a non-zero row in M_{k}, $K=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right] . K \in \operatorname{rowspace}\left(M_{k}\right)$ and since $K \in \mathbf{R}^{3}$ it can be written as a linear combination of $\left\{R_{1}, R_{2}, R\right\}$ as follows:

$$
\begin{aligned}
& K=1 . R_{1}+1 . R_{2}-R=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right]-\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right] \\
& \text { Let } Y=K-(-1) . R=K+R=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1
\end{array}\right] . \\
& \text { This implies } Y \in \operatorname{rowspace}\left(M_{k}\right) \text { and } Y \in \operatorname{rowspace}\left(M_{f}\right) . \text { Let } M_{d}=\left[\begin{array}{c}
Y \\
0 \\
0 \\
0
\end{array}\right]_{4 \times 3}=
\end{aligned}
$$ $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]_{4 \times 3}$, be the standard matrix representation of some $d \in[W]$.

Since $Y \in \operatorname{rowspace}\left(M_{f}\right)$, Y becomes a zero row through row operations using the rows in M_{f}. Thus null $\left(M_{f d}\right) \neq 0$ since $\operatorname{rank}\left(M_{f d}\right)=2$. Hence $\operatorname{ker}(T) \cap \operatorname{ker}(W) \neq$ 0 . Hence $[T],[W]$ are adjacent. Similarly, since $Y \in \operatorname{rowspace}\left(M_{k}\right), Y$ becomes a zero row through row operations using the rows in M_{k}. Hence null $\left(M_{k d}\right) \neq 0$ since $\operatorname{rank}\left(M_{k d}\right)=2$. Thus $\operatorname{ker}(L) \cap \operatorname{ker}(W) \neq 0$. Thus $[W],[L]$ are adjacent. Therefore, we have $[T]-[W]-[L]$.

Theorem 2.7. Consider the undirected graph $G_{m, n}$. Assume that $n<m \leq 2 n$ and $m \neq 1$ or $m \neq 2$. Then $G_{m, n}$ is connected and $\operatorname{diam}\left(G_{m, n}\right)=2$.

Proof. Let $[T],[L] \in V$, such that $[T]$ and $[L]$ are not adjacent $(\operatorname{ker}(T) \cap \operatorname{ker}(L)=$ 0_{m}), and $[T] \neq 0,[L] \neq 0$. Let, $f \in[T]$ and $k \in[L]$, then $\operatorname{rank}\left(M_{f}\right)<m$ and $\operatorname{rank}\left(M_{k}\right)<m$, where M_{f} and M_{k} are the standard matrix representations of f and k, with size $n \times m$.

Assume that $n+1<m \leq 2 n$. Then $\operatorname{rank}\left(M_{f}\right)=n-i$, where $i=0,1,2, \ldots$, and $\operatorname{rank}\left(M_{k}\right)=n-j$, where $j=0,1,2, \ldots$. Thus we can choose any non-zero row from M_{f} or M_{k}, say Y, to form the $n \times m$ matrix M_{d}, where:

$$
M_{d}=\left[\begin{array}{c}
Y \\
0 \\
\vdots \\
0
\end{array}\right]
$$

is the standard matrix representation of some $d \in[W]$, such that $[T]-[W]-[L]$.
Assume that $m=n+1$. Then we have three cases. Case I. Assume that $\operatorname{rank}\left(M_{f}\right)=n=m-1$, and $\operatorname{rank}\left(M_{k}\right)=n-j$, where $j=1,2, \ldots$. Then we can choose any non-zero row, say Y from M_{f}, (Note that M_{f} is the matrix with the
higher rank), to form the $n \times m$ matrix M_{d}, where:

$$
M_{d}=\left[\begin{array}{c}
Y \\
0 \\
\vdots \\
0
\end{array}\right]
$$

is the standard matrix representation of some $d \in[W]$, such that $[T]-[W]-[L]$. Case II. Assume that rank $\left(M_{f}\right)=n-i$, where $i=1,2, \ldots$ and $\operatorname{rank}\left(M_{k}\right)=n-j$, where $j=1,2, \ldots$. In this case any non-zero row Y can be chosen either from M_{f} or M_{k}, to form M_{d}, where:

$$
M_{d}=\left[\begin{array}{c}
Y \\
0 \\
\vdots \\
0
\end{array}\right]
$$

. is the standard matrix representation of some $d \in[W]$, such that $[T]-[W]-[L]$. Case III. Assume that $\operatorname{rank}\left(M_{f}\right)=n$ and $\operatorname{rank}\left(M_{k}\right)=n$. Then M_{f} has n independent rows $R_{1}, R_{2}, \ldots, R_{n}$. Since $[T]$ and $[L]$ are not adjacent, M_{k} has one row say R such that, $\left\{R_{1}, R_{2}, \ldots, R_{m-1}, R\right\}$ is an independent set which forms a basis for $\mathbf{R}^{m}=\mathbf{R}^{n+1}$. Let $K \neq R$ be a non-zero row in M_{k}. Hence $K \in$ rowspace $\left(M_{k}\right)$. Since $K \in \mathbf{R}^{n+1}$, we have:

$$
K=c_{1} R_{1}+c_{2} R_{2}+\cdots+c_{n} R_{n}+c_{n+1} R
$$

Let $Y=K-c_{n+1} R$. Hence $Y \in \operatorname{rowspace}\left(M_{k}\right)$, (since both $K, c_{n+1} R \in \operatorname{rowspace}\left(M_{k}\right)$), and $Y \in \operatorname{rowspace}\left(M_{f}\right)$. Let $M_{d}=\left[\begin{array}{c}Y \\ 0 \\ \vdots \\ 0\end{array}\right]_{n \times m}$, be the standard matrix representation of some $d \in[W]$.

Since $Y \in$ rowspace $\left(M_{f}\right), Y$ becomes a zero row through row operations using the rows in M_{f}, null $\left(M_{f d}\right) \neq 0$ since $\operatorname{rank}\left(M_{f d}\right)=n$. Hence $\operatorname{ker}(T) \cap \operatorname{ker}(W) \neq 0$. Thus $[T],[W]$ are adjacent. Similarly, since $Y \in$ rowspace $\left(M_{k}\right), Y$ becomes a zero row through row operations using the rows in M_{k}. Hence null $\left(M_{k d}\right) \neq 0$ since $\operatorname{rank}\left(M_{k d}\right)=n$. Thus $\operatorname{ker}(L) \cap \operatorname{ker}(W) \neq 0$. Thus $[W],[L]$ are adjacent. Therefore, we have $[T]-[W]-[L]$.
Example 2.8. Suppose $m=4$ and $n=3$ and consider the graph $G_{4,3}$. Note that $n<m \leq 2 n, m \neq 1,2$ and and $m=n+1$. Thus m, n satisfy the given hypothesis in Theorem 2.7. Let $[T],[L] \in V$, such that $[T]$ and $[L]$ are not adjacent. Let $f \in[T]$, and $k \in[L]$. Then $\operatorname{rank}\left(M_{f}\right)<m$ and $\operatorname{rank}\left(M_{k}\right)<m$, where M_{f} and M_{k} are the standard matrix representations of f and k, with size $n \times m=3 \times 4$. Suppose,

$$
M_{f}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]_{3 \times 4}, M_{k}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]_{3 \times 4}
$$

Let $M_{f k}=\left[\begin{array}{l}M_{f} \\ M_{k}\end{array}\right]_{6 \times 4}$. It can be easily seen that $\operatorname{rank}\left(M_{f k}\right)=4$, which implies that null $\left(M_{f k}\right)=0$. Therefore, $\operatorname{ker}(f) \cap \operatorname{ker}(k)=0$, that is, the vertices $[T]$ and
[L] are not adjacent. Hence $\operatorname{rank}\left(M_{f}\right)=3=n$, and $\operatorname{rank}\left(M_{k}\right)=3=n$. Then M_{f} has 3 independent rows R_{1}, R_{2}, and R_{3}, such that $R_{1}=\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]$, $R_{2}=\left[\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right]$, and $R_{3}=\left[\begin{array}{cccc}0 & 0 & 1 & 0\end{array}\right]$. The vertices $[T]$ and $[L]$ are not adjacent, thus M_{k} has one row, $R=\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$, such that $\left\{R_{1}, R_{2}, R_{3}, R\right\}$ is an independent set which forms a basis for \mathbf{R}^{4}. Let $K \neq R$ be a non-zero row in $M_{k}, K=\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right]$. Since $K \in \operatorname{rowspace}\left(M_{k}\right)$ and $K \in \mathbf{R}^{4}$, it can be written as a linear combination of $\left\{R_{1}, R_{2}, R_{3}, R\right\}$ as follows:
$K=0 \cdot R_{1}+1 \cdot R_{2}+0 \cdot R_{3}+(-1) \cdot R=\left[\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right]-\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right]$
Let, $Y=K-(-1) . R=K+R=\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right]+\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right]$.
This implies $Y \in \operatorname{rowspace}\left(M_{k}\right)$ and $Y \in \operatorname{rowspace}\left(M_{f}\right)$. Let, $M_{d}=\left[\begin{array}{l}Y \\ 0 \\ 0\end{array}\right]_{3 \times 4}=$
$\left[\begin{array}{llll}0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]_{3 \times 4}$, be the standard matrix representation of some $d \in[W]$.
Since $Y \in$ rowspace $\left(M_{f}\right)$, Y becomes a zero row through row operations using the rows in M_{f}. Thus null $\left(M_{f d}\right) \neq 0$, since $\operatorname{rank}\left(M_{f d}\right)=3$. Hence $\operatorname{ker}(T) \cap \operatorname{ker}(W) \neq$ 0 . Thus $[T],[W]$ are adjacent. Similarly, since $Y \in \operatorname{rowspace}\left(M_{k}\right), Y$ becomes a zero row through row operations using the rows in M_{k}. Thus null $\left(M_{k d}\right) \neq 0$ since $\operatorname{rank}\left(M_{k d}\right)=3$. Hence $\operatorname{ker}(L) \cap \operatorname{ker}(W) \neq 0$. Thus $[W],[L]$ are adjacent. Therefore, we have $[T]-[W]-[L]$.

Theorem 2.9. Assume that $G_{m, n}$ is connected. Then $\left.\operatorname{gr}\left(G_{m, n}\right)\right)=3$.
Proof. $[T],[L] \in V$, such that $[T]$ and $[L]$ are adjacent, $\operatorname{ker}(T) \cap \operatorname{ker}(L) \neq 0$ and $[T] \neq 0,[L] \neq 0$. Let, $f \in[T]$ and $k \in[L]$, then M_{f} and M_{k} are the standard matrix representations of f and k with size $n \times m$. Suppose, that each matrix M_{f} and M_{k}, is composed of only one row, R_{f} and R_{k} that are independent of each other since f and k are in different equivalence classes $[T]$ and $[L] . M_{f}$ and M_{k} can be written as follows:

$$
M_{f}=\left[\begin{array}{c}
R_{f} \\
0 \\
\vdots \\
0
\end{array}\right]_{n \times m}, M_{k}=\left[\begin{array}{c}
R_{k} \\
0 \\
\vdots \\
0
\end{array}\right]_{n \times m}
$$

Let $Y=R_{f}+R_{k}$. Since Y is a linear combination of two linearly independent rows, then the set $\left\{Y, R_{f}, R_{k}\right\}$ is also linearly independent.
Let $M_{d}=\left[\begin{array}{c}Y \\ 0 \\ \vdots \\ 0\end{array}\right]_{n \times m}$, be the standard matrix representation of some non-trivial
linear transformation d. Since Y is independent of both R_{f} and R_{k}, M_{d} is not rowequivalent to either M_{f} or M_{k}, hence d is in a different equivalence class from both f and k, say $d \in[W]$. Since $\operatorname{ker}(T) \cap \operatorname{ker}(L) \neq 0$, we have null $\left(M_{f k}\right) \neq 0$, which implies null $\left(M_{f d}\right) \neq 0$ and null $\left(M_{k d}\right) \neq 0$. Therefore, we have, $[T]-[L]-[W]-[T]$. This forms the shortest possible cycle. Hence $\left.\operatorname{gr}\left(G_{m, n}\right)\right)=3$.

Acknowledgment The second-named author would like to thank the Graduate Office at the American University of Sharjah for the continuous support.

References

[1] Abdulla, M., Badawi, A., On the dot product graph of a commutative ring II, 25 Int. Electron. J. Algebra 28, 61-175 (2020).
[2] Akbari, S., Maimani, H. R., Yassemi, S.: When a zero-divisor graph is planar or a complete r-partite graph. J Algebra. 270, 169-180 (2003).
[3] Akbari, S., Mohammadian, A., On the zero-divisor graph of a commutative ring. J Algebra. 274, 847-855 (2004).
[4] Abbasi, A., Habib, S.: The total graph of a commutative ring with respect to proper ideals. J. Korean Math. Soc. 49, 85-98 (2012)
[5] Akbari, S., Heydari, F.: The regular graph of a non-commutative ring. Bulletin of the Australian Mathematical Society (2013) Doi: 10.1017/S0004972712001177
[6] Akbari, S., Aryapoor, M., Jamaali, M.: Chromatic number and clique number of subgraphs of regular graph of matrix algebras. Linear Algebra Appl. 436, 2419-2424 (2012).
[7] Akbari, S., Jamaali, M., Seyed Fakhari, S.A.: The clique numbers of regular graphs of matrix algebras are finite. Linear Algebra Appl. 43, 1715-1718 (2009).
[8] Akbari, S., Kiani, D., Mohammadi, F., Moradi, S.: The total graph and regular graph of a commutative ring. J. Pure Appl. Algebra 213, 2224-2228 (2009).
[9] Anderson, D. D., Naseer, M., Beck's coloring of a commutative ring. J Algebra. 159, 500-514 (1993).
[10] Anderson, D.F., Axtell, M., Stickles, J.: Zero-divisor graphs in commutative rings. In : Fontana, M., Kabbaj, S.E., Olberding, B., Swanson, I. (eds.) Commutative Algebra Noetherian and Non-Noetherian Perspectives, pp. 23-45. Springer-Verlag, New York (2010).
[11] Anderson, D. F., Badawi, A.: "The Zero-Divisor Graph of a Commutative Semigroup: A Survey, DOI: 10.1007/978-3-319-51718-6_2." In Groups, Modules, and Model Theory Surveys and Recent Developments, edited by Manfred Droste, László Fuchs, Brendan Goldsmith, Lutz Strüngmann, 23-39. Germany/NewYork: Springer, 2017.
[12] Anderson, D.F., Badawi, A.: On the zero-divisor graph of a ring. Comm. Algebra 36, 3073-3092 (2008).
[13] Anderson, D.F., Badawi, A.: The total graph of a commutative ring. J. Algebra 320, 27062719 (2008).
[14] Anderson, D.F., Badawi, A.: The total graph of a commutative ring without the zero element. J. Algebra Appl. (2012) doi: 10.1142/S0219498812500740.
[15] Anderson, D.F., Badawi, A.: The generalized total graph of a commutative ring. J. Algebra Appl. (2013) doi: 10.1142/S021949881250212X.
[16] Anderson, D.F., Fasteen, J., LaGrange, J.D.: The subgroup graph of a group. Arab. J. Math. 1, 17-27 (2012).
[17] Anderson. D.F., Livingston, P.S.: The zero-divisor graph of a commutative ring. J. Algebra 217, 434-447 (1999). 434-447.
[18] Anderson, D.F., Mulay, S.B.: On the diameter and girth of a zero-divisor graph. J. Pure Appl. Algebra 210, 543-550 (2007).
[19] Afkhami, M., Khashyarmanesh, K., and Sakhdari, S. M.: The annihilator graph of a commutative semigroup, J. Algebra Appl. 14, (2015) [14 pages] DOI: 10.1142/S0219498815500152
[20] Atani, S.E., Habibi, S.: The total torsion element graph of a module over a commutative ring. An. Stiint. Univ.'Ovidius Constanta Ser. Mat. 19, 23-34 (2011).
[21] Axtel, M, Coykendall, J. and Stickles, J. : Zero-divisor graphs of polynomials and power series over commutative rings, Comm.Algebra 33, 2043-2050 (2005).
[22] Axtel, M., Stickles, J.: Zero-divisor graphs of idealizations. J. Pure Appl. Algebra 204, 235-243 (2006).
[23] Badawi, A.: Recent results on annihilator graph of a commutative ring: A survey. In Nearrings, Nearfields, and Related Topics, edited by K. Prasad et al, (11 pages), New Jersey: World Scientific, 2017.
[24] Badawi, A.: On the Total Graph of a Ring and Its Related Graphs: A Survey. In Commutative Algebra: Recent Advances in Commutative Rings, Integer-Valued Polynomials, and

Polynomial Functions, DOI 10.1007/978-1-4939-0925-4 3, edited by M. Fontana et al. (eds.), 39-54. New York: Springer Science, 2014.
[25] Badawi, A., On the dot product graph of a commutative ring, Comm. Algebra 43, 43-50 (2015).
[26] Badawi, A.: On the annihilator graph of a commutative ring, Comm. Algebra, Vol.(42)(1), 108-121 (2014), DOI: 10.1080/00927872.2012.707262.
[27] Barati, Z., Khashyarmanesh, K., Mohammadi, F., Nafar, K.: On the associated graphs to a commutative ring. J. Algebra Appl. (2012) doi: 10.1142/S021949881105610.
[28] Beck, I.: Coloring of commutative rings. J. Algebra 116, 208-226 (1988).
[29] Bollaboás, B.: Graph Theory, An Introductory Course. Springer-Verlag, New York (1979).
[30] Chelvam, T., Asir, T.: Domination in total graph on \mathbb{Z}_{n}. Discrete Math. Algorithms Appl. 3, 413-421 (2011).
[31] Chelvam, T., Asir, T.: Domination in the total graph of a commutative ring. J. Combin. Math. Combin. Comput. 87, 147-158 (2013).
[32] Chelvam, T., Asir, T.: Intersection graph of gamma sets in the total graph. Discuss. Math. Graph Theory 32, 339-354 (2012).
[33] Chelvam, T., Asir, T.: On the Genus of the Total Graph of a Commutative Ring. Comm. Algebra 41, 142-153 (2013).
[34] Chelvam, T., Asir, T.: On the total graph and its complement of a commutative ring. Comm. Algebra (2013) doi:10.1080/00927872.2012.678956.
[35] Chelvam, T., Asir, T.: The intersection graph of gamma sets in the total graph I. J. Algebra Appl. (2013) doi: 10.1142/S0219498812501988.
[36] Chelvam, T., Asir, T.: The intersection graph of gamma sets in the total graph II. J. Algebra Appl. (2013) doi: 10.1142/S021949881250199X.
[37] Chiang-Hsieh, H.-J., Smith, N. O., Wang, H.-J.: Commutative rings with toroidal zerodivisor graphs. Houston J Math. 36, 1-31 (2010).
[38] Coykendall, J., Sather-Wagstaff, S., Sheppardson, L., Spiroff, S.: On zero divisor graphs, Progress in Commutative Algebra 2: Closures, finiteness and factorization, edited by (C. Francisco et al. Eds.),Walter Gruyter, Berlin, (2012), 241-299.
[39] DeMeyer, F., DeMeyer, L., Zero divisor graphs of semigroups: J. Algebra. 283, 190-198 (2005).
[40] DeMeyer, F., McKenzie, T., Schneider, K.: The zero-divisor graph of a commutative semigroup. Semigroup Forum. 65, 206-214 (2002).
[41] DeMeyer, F., Schneider, K., Automorphisms and zero divisor graphs of commutative rings. In: Commutative rings. Hauppauge, NY: Nova Sci. Publ.; 2002. p. 25-37.
[42] DeMeyer, L., D'Sa, M., Epstein, I., Geiser, A., Smith, K., Semigroups and the zero divisor graph. Bull. Inst. Combin. Appl. 57, 60-70, (2009).
[43] DeMeyer, L., Greve, L., Sabbaghi, A., Wang, J., The zero-divisor graph associated to a semigroup. Comm. Algebra. 38, 3370-3391 (2010).
[44] Khashyarmanesh, K., Khorsandi, M.R.: A generalization of the unit and unitary Cayley graphs of a commutative ring. Acta Math. Hungar. 137, 242-253 (2012).
[45] Maimani, H.R., Pouranki, M.R., Tehranian, A., Yassemi, S.: Graphs attached to rings revisited. Arab. J. Sci. Eng. 36, 997-1011 (2011).
[46] Maimani, H. R., Pournaki, M. R., Yassemi, S., Zero-divisor graph with respect to an ideal. Comm. Algebra. 34, 923-929 (2006).
[47] Maimani, H.R., Wickham, C., Yassemi, S.: Rings whose total graphs have genus at most one. Rocky Mountain J. Math. 42, 1551-1560 (2012).
[48] Mojdeh1, D. A., Rahimi, A. M: Domination sets of some graphs associated to commutative ring. Comm. Algebra 40, 3389-3396 (2012).
[49] Mulay, S. B.: Cycles and symmetries of zero-divisors. Comm Algebra. 30, 3533-3558 (2002).
[50] Nikandish, R., Nikmehr, M. J., Bakhtyiari, M.: Coloring of the annihilator graph of a commutative ring, J. Algebra Appl. 15(07) (2016). DOI: 10.1142/S0219498816501243
[51] Pucanović, Z., Petrović, Z.: On the radius and the relation between the total graph of a commutative ring and its extensions. Publ. Inst. Math.(Beograd)(N.S.) 89, 1-9 (2011).
[52] Redmond, S. P., An ideal-based zero-divisor graph of a commutative ring. Comm Algebra. 31, 4425-4443 (2003).
[53] Smith, N. O: Planar zero-divisor graphs, Comm. Algebra 35, 171-180 (2007).
[54] Sharma, P.K., Bhatwadekar, S.M.: A note on graphical representations of rings. J. Algebra 176, 124-127 (1995).
[55] Shekarriz, M.H., Shiradareh Haghighi, M.H., Sharif, H.: On the total graph of a finite commutative ring. Comm. Algebra 40, 2798-2807 (2012).
[56] Visweswaran, S., Patel, H. D.: A graph associated with the set of all nonzero annihilating ideals of a commutative ring, Discrete Math. Algorithm. Appl. 06, (2014) [22 pages] DOI: 10.1142/S1793830914500475
[57] Wickham, C.: Classification of rings with genus one zero-divisor graphs. Comm Algebra. 36, 325-345 (2008).

Department of Mathematics \& Statistics, The American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates

Email address: abadawi@aus.edu
Department of Mathematics \& Statistics, The American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates

Email address: g00007313@alumni.aus.edu

[^0]: 2020 Mathematics Subject Classification. 13A15, 13B99, 05C99.
 Key words and phrases. zero-divisor graph, total graph, unitary graph, dot product graph, annihilator graph, linear transformations graph.

