GRAPH OF LINEAR TRANSFORMATIONS OVER $\ensuremath{\mathbb{R}}$

AYMAN BADAWI AND YASMINE EL-ASHI

ABSTRACT. In this paper, we study a connection between graph theory and linear transformations of finite dimensional vector spaces over \mathbb{R} (the set of all real numbers). Let $\mathbb{R}^m, \mathbb{R}^n$ be finite vector spaces over \mathbb{R} , and let L be the set of all non-trivial linear transformations from \mathbb{R}^m into \mathbb{R}^n . An equivalence relation \sim is defined on L such that two elements $f, k \in L$ are equivalent, $f \sim k$, if and only if ker $(f) = \ker(k)$. Let $m, n \geq 1$ be positive integers and $V_{m,n}$ be the set of all equivalence classes of \sim . We define a new graph, $G_{m,n}$, to be the undirected graph with vertex set equals to $V_{m,n}$, such that two vertices, $[x], [y] \in V_{m,n}$ are adjacent if and only if ker $(x) \cap \ker(y) \neq 0$. The relationship between the connectivity of the graph $G_{m,n}$ and the values of m and n has been investigated. We determine the values of m and n so that $G_{m,n}$.

1. INTRODUCTION

Let R be a commutative ring with $1 \neq 0$. Recently, there has been considerable attention in the literature to associating graphs with commutative rings (and other algebraic structures), as well as, studying the interplay between ring-theoretic and graph-theoretic properties; see the survey articles [11], [10], [38] and [45]. In particular, as in [17], the zero-divisor graph of R is the (simple) graph $\Gamma(R)$ with vertices $Z(R) \setminus \{0\}$, and distinct vertices x and y are adjacent if and only if xy = 0. This concept is due to Beck [28], who let all the elements of R be vertices and was mainly interested in coloring. The zero-divisor graph of a ring R has been studied extensively by many authors, for example see([2]-[9], [12], [21]-[22], [37]-[43], [46]-[53], [57]). David. F. Anderson and the first-named author [13] introduced the total graph of R, denoted by $T(\Gamma(R))$. We recall from [13] that the total graph of a commutative ring R is the (simple) graph $\Gamma(R)$ with vertices R, and distinct vertices x and y are adjacent if and only if $x + y \in Z(R)$. The total graph (as in [13]) has been investigated in [8], [7], [6], [5], [45], [47], [51], [34] and [55]; and several variants of the total graph have been studied in [4], [14], [15], [16], [20], [27], [33], [30], [31], [32], [35], [36], and [44].

Let $a \in Z(R)$ and let $ann_R(a) = \{r \in R \mid ra = 0\}$. In 2014, A. Badawi [26] introduced the annihilator graph of R. We recall from [26] that the annihilator graph of R is the (undirected) graph AG(R) with vertices $Z(R)^* = Z(R) \setminus \{0\}$, and two distinct vertices x and y are adjacent if and only if $ann_R(xy) \neq ann_R(x) \cup$ $ann_R(y)$. See the survey article [23]. It follows that each edge (path) of the classical zero-divisor of R is an edge (path) of AG(R). For further investigations of AG(R),

²⁰²⁰ Mathematics Subject Classification. 13A15, 13B99, 05C99.

Key words and phrases. zero-divisor graph, total graph, unitary graph, dot product graph, annihilator graph, linear transformations graph.

see [19], [50], and [56]. In 2015, A. Badawi, investigated the total dot product graph of R [25]. In this case $R = A \times A \times \cdots \times A$ (n times), where A is a commutative ring with nonzero identity, and $1 \leq n < \infty$ is an integer. The total dot product graph of R is the (undirected) graph denoted by TD(R), with vertices $R^* = R \setminus \{(0, 0, \ldots, 0)\}$. Two distinct vertices are adjacent if and only if $x \cdot y = 0 \in A$, where $x \cdot y$ denote the normal dot product of x and y. The zero-divisor dot product graph of R is the induced subgraph ZD(R) of TD(R) with vertices $Z(R)^* = Z(R) \setminus \{(0, 0, \ldots, 0)\}$. It follows that each edge (path) of the classical zero-divisor graph $\Gamma(R)$ is an edge (path) of ZD(R). In [25], both graphs TD(R) and ZD(R) are studied. The total dot product graph was recently further investigated in [1].

Other types of graphs attached to groups and rings were studied (for example) in [6], [8], [27], [37], [39]–[43], and [44].

Let G be a graph. Two vertices v_1, v_2 of G are said to be *adjacent* in G if v_1, v_2 are connected by an edge of G and we write $v_1 - v_2$. For vertices x and y of G, we define d(x, y) to be the length of a shortest path from x to y $(d(x, x) = 0 \text{ and } d(x, y) = \infty$ if there is no path). Then the *diameter* of G is diam $(G) = \sup\{d(x, y) \mid x \text{ and } y \text{ are vertices of } G\}$. The girth of G, denoted by gr(G), is the length of a shortest cycle in $G(gr(G) = \infty$ if G contains no cycles).

We say G is connected if there is a path in G from u to v for every $u, v \in V$. Therefore, a graph is said to be *disconnected*, if there exist at least two vertices $u, v \in V$ that are not joined by a path. We say that G is *totally disconnected* if no two vertices of G are adjacent. We denote the complete graph on n vertices by K_n , recall that a graph G is called complete if every two vertices of G are adjacent.

In this paper, we introduce a connection between graph theory and linear transformations of finite dimensional vector spaces over \mathbb{R} (the ring of all real numbers). Let U and W be finite dimensional vector spaces over \mathbb{R} , such that m = dim(U)and n = dim(W). Since every finite dimensional vector space over \mathbb{R} with dimension k is isomorphic to \mathbb{R}^k , we conclude that U is isomorphic to \mathbb{R}^m and W is isomorphic to \mathbb{R}^n . Let $m, n \ge 1$ be positive integers and $L = \{t : \mathbb{R}^m \to \mathbb{R}^n \mid t \text{ is}$ a nontrivial linear transformation from \mathbb{R}^m into \mathbb{R}^n }. If $s, t \in L$, then we say that s is equivalent to t, and we write $s \sim t$ if and only if Ker(s) = Ker(t). Clearly, \sim is an equivalence relation on L. For each $t \in L$, the set $[t] = \{s \in L | s \sim t\}$ is called the equivalence class of t. Let $V_{m,n}$ be the set of all equivalence classes of \sim . For positive integers $m, n \ge 1$, let $G_{m,n}$ be a simple undirected graph with vertex set $V_{m,n}$ such that two distinct vertices $[f], [k] \in V_{m,n}$ are adjacent if and only if $Ker(f) \cap Ker(k) \neq \{(0, \dots, 0)\} \subset \mathbb{R}^m$.

2. Results

Remark 2.1. If a graph G has one vertex, then we say that G is totally disconnected. Note that some authors state that such graph is connected.

We have the following result.

Theorem 2.2. The undirected graph $G_{m,1}$ is totally disconnected if and only if m = 1 or m = 2. Furthermore, if m = 1, then $V_{1,1} = \{[t]\}$ for some $t \in L$.

Proof. Assume m = 1. Let $[t] \in V_{1,1}$. Since $t \in L$ (i.e., t is a nontrivial linear transformation from \mathbb{R} into \mathbb{R}), we conclude that dim(Range(t)) = 1. Since dim(Ker(t)) + dim(Range(t)) = m = 1 and dim(Range(t)) = 1, we conclude that

 $Ker(t) = \{0\}$. Thus $f \in [t]$ for every $f \in L$. Hence $V_{1,1} = \{[t]\}$ for some $t \in L$. Thus $G_{1,1}$ is totally disconnected by Remark 2.1.

Assume m = 2. Let $[t], [f] \in V_{2,1}$ be two distinct vertices. Since $t, f \in L$ (i.e., t, f are nontrivial linear transformations from \mathbb{R}^2 into \mathbb{R}), we conclude that dim(Range(t)) = dim(Range(t)) = 1. Since dim(Ker(t)) + dim(Range(t)) = m = 2 and dim(Range(t)) = 1, we conclude that dim(Ker(t)) = 1. Similarly, dim(Ker(f)) = 1. Since $t, f \in L$, and dim(Ker(t)) = dim(Ker(f)) = 1, we conclude that Ker(t) and Ker(f) are distinct lines passing through the origin (0,0). Thus $Ker(t) \cap Ker(f) = \{(0,0)\}$. Hence [t], [f] are nonadjacent. Thus $G_{2,1}$ is totally disconnected.

Now assume m > 2. We show that $G_{m,1}$ is connected. Let, $[t], [w] \in V_{m,1}$ be two distinct vertices. We show that ker $(f) \cap \text{ker}(k) \neq \{(0, \dots, 0)\}$ for some $f \in [t]$ and $k \in [w]$. Let \mathbf{M}_f be the standard $1 \times m$ matrix representation of f for some $f \in [t] \in V_{m,1}$ and \mathbf{M}_k be the standard $1 \times m$ matrix representation of k for some $k \in [w] \in V_{m,1}$. By hypothesis, \mathbf{M}_f is not row-equivalent to \mathbf{M}_k . Say, $\mathbf{M}_f = \begin{bmatrix} f_{11} & f_{12} & \cdots & f_{1m} \end{bmatrix}$ and $\mathbf{M}_k = \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1m} \end{bmatrix}$

Let,
$$\mathbf{M}_{fk} = \begin{bmatrix} \mathbf{M}_f \\ \mathbf{M}_k \end{bmatrix}$$
 and consider the system, $\mathbf{M}_{fk}\mathbf{x} = \mathbf{0}$, that is,

$\left[\begin{array}{cccc} f_{11} & f_{12} & \cdots & f_{1m} \\ k_{11} & k_{12} & \cdots & k_{1m} \end{array}\right]$	$\left[\begin{array}{c} x_1\\ x_2\\ \vdots\\ x_m \end{array}\right]$	=	$\left[\begin{array}{c} 0\\ 0\\ \vdots\\ 0 \end{array}\right]$
---	--	---	--

Since, m > 2, the number of equations < the number of unknown variables. Hence, the system $\mathbf{M}_{fk}\mathbf{x} = \mathbf{0}$ has infinitely many solutions. Therefore, ker $(f) \cap$ ker $(k) \neq \mathbf{0}$, that is, the vertices [t] and [w] are adjacent. Further, since [t], [w] were chosen randomly, we conclude that the graph $G_{m,1}$ is complete for m > 2.

Theorem 2.3. For m = 1 or m = 2, the undirected graph $G_{2,n}$ is totally disconnected for every positive integer $n \ge 1$.

Proof. Assume m = 1 and $n \ge 1$ be a positive integer. Then by the proof of Theorem 2.2, we conclude that $V_{1,n} = \{[t]\}$ for some $t \in L$. Hence $V_{1,n}$ is totally disconnected by Remark 2.1.

Assume m = 2, and let $[t], [w] \in V$ be two distinct vertices. We want to show ker $(f) \cap$ ker (k) = 0 for some $f \in [t]$ and $k \in [w]$. We may assume that neither Ker(f) = 0 nor Ker(k) = 0. Hence dim(Ker(f)) = dim(Ker(k)) = 1. Thus $Ker(f) \cap Ker(k) = \{(0,0)\}$. Since [f], [k] were chosen randomly, we conclude that the graph $G_{2,n}$ is totally disconnected for m = 2.

Theorem 2.4. The graph $G_{m,n}$ is complete if and only if $m \ge 2n + 1$.

Proof. Let $[t], [w] \in V$ such that $Ker(f) \neq 0$ and $Ker(k) \neq 0$ for some $f \in [t]$ and $k \in [w]$. Let \mathbf{M}_f be the standard $n \times m$ matrix representation of $[f], \mathbf{M}_k$ be the standard $n \times m$ matrix representation of [k], and let $\mathbf{M}_{fk} = \begin{bmatrix} \mathbf{M}_f \\ \mathbf{M}_k \end{bmatrix}$

Assume, $(x_1, x_2, \cdots, x_m) \in \mathbf{R}^m$ is a solution to $\mathbf{M}_{fk}\mathbf{x} = 0$, that is,

$$\begin{bmatrix} \mathbf{M}_f \\ \mathbf{M}_k \end{bmatrix}_{2n \times m} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}_{m \times 1} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}_{2n \times 1}$$

Let $r = \operatorname{rank}(\mathbf{M}_{fk}).$

Assume $m \ge 2n + 1$. We show ker $(f) \cap \text{ker}(k) \ne 0$. Since $r \le 2n$ and $m \geq 2n+1$, we have number of equations < number of unknown variables. Hence, the system $\mathbf{M}_{fk}\mathbf{x} = 0$ has infinitely many solutions, or null $(\mathbf{M}_{fk}) \neq 0$. Therefore, ker $(f) \cap$ ker $(k) \neq 0$, that is the vertices [t] and [w] are adjacent. Since [t] and [w]are chosen randomly, we conclude that the graph $G_{m,n}$ is complete for $m \ge 2n+1$.

Conversaly, assume that $G_{m,n}$ is complete. We show that $m \ge 2n+1$. Suppose that m < 2n + 1. We show that $G_{m,n}$ is not complete. Let $[t], [w] \in V$ such that $Ker(f) \neq 0$ and $Ker(k) \neq 0$ for some $f \in [t]$ and $k \in [w]$.

Case I: Suppose r = m.

We conclude that \mathbf{M}_{fk} has *m* independent rows, say R_1, R_2, \cdots, R_m . Consider the system,

$$\begin{bmatrix} R_1 \\ R_2 \\ \vdots \\ R_m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Since $\begin{bmatrix} R_1 & R_2 & \cdots & R_m \end{bmatrix}^T$ is an invertible $m \times m$ matrix, we have $\operatorname{null}(\begin{bmatrix} R_1 & R_2 & \cdots & R_m \end{bmatrix})^T = (0, 0, \cdots, 0)$. Thus $\operatorname{ker}(t) \cap \operatorname{ker}(w) = 0$. Hence the vertices [t] and [w] are nonadjacent

Case II: Suppose r < m. Thus we have the following system:

$$\begin{bmatrix} R_1 \\ R_2 \\ \vdots \\ R_r \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Since number of equations < number of unknown variables, we conclude that null $\left(\begin{bmatrix} R_1 & R_2 & \cdots & R_r \end{bmatrix}^T \right) \neq (0, 0, \cdots, 0)$. This implies ker $(f) \cap \ker(k) \neq 0$. Hence the vertices [t] and [w] are adjacent.

Since the vertices [t] and [w] can either be adjacent or nonadjacent, we conclude that the graph $G_{m,n}$ is not complete for every $1 \le m < 2n + 1$.

Theorem 2.5. Consider the undirected graph $G_{m,n}$. Assume $m \leq n$ and $m \neq 1$ or $m \neq 2$. Then $G_{m,n}$ is connected and $diam(G_{m,n}) = 2$.

Proof. Let $[t], [w] \in V$ such that [t] and [w] are nonadjacent. Choose $f \in [t]$ and $k \in [w]$. Then rank $(M_f) \neq m$ and rank $(M_k) \neq m$, where M_f and M_k are the standard matrix representations of f and k, with size $n \times m$.

Assume rank $(M_f) = m - i$, where $i \in \mathbf{N}, i \neq 1$, and rank $(M_k) = m - j$, where $j \in \mathbf{N}, j \neq 1$. Then choose any non-zero row from M_f or M_k , say Y, to form the $n \times m$ matrix M_d , where:

$$M_d = \begin{bmatrix} Y \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

is the standard matrix representation of some $d \in [h] \in V_{m,n}$, such that [t] - [h] - [w].

Assume that rank $(M_f) = m - 1$ and rank $(M_k) = m - 1$. Then M_f has m - 1independent rows, $R_1, R_2, \ldots, R_{m-1}$. Since [t] and [w] are nonadjacent, M_k has one row say R such that, $\{R_1, R_2, \ldots, R_{m-1}, R\}$ is an independent set which forms a basis for \mathbb{R}^m . Let $K \neq R$ be a non-zero row in M_k . Hence $K \in \text{rowspace}(M_k)$. Since $K \in \mathbf{R}^m$, we have:

$$K = c_1 R_1 + c_2 R_2 + \dots + c_{m-1} R_{m-1} + c_m R$$

Let $Y = K - c_m R$. Thus $Y \in \text{rowspace}(M_k)$, (since both K and $c_m R$ are \in

rowspace (M_k)), and $Y \in \text{rowspace}(M_f)$. Let $M_d = \begin{bmatrix} Y \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, be the standard

matrix representation of some $d \in [h] \in V_{m,n}$. Since $Y \in \text{rowspace}(M_f)$, Y becomes a zero row through row operations using the rows in M_f . Thus null $(M_{fd}) \neq 0$, since rank $(M_{fd}) = m - 1$. Hence ker $(f) \cap \text{ker}(d) \neq 0$. Hence [t], [h] are connected by an edge. Similarly, since $Y \in \text{rowspace}(M_k)$, Y becomes a zero row through row operations using the rows in M_k . Thus null $(M_{kd}) \neq 0$, since rank $(M_{kd}) = m - 1$. Hence ker $(d) \cap ker(k) \neq 0$. Thus [h] and [w] are adjacent. Therefore, we have [t] - [h] - [w].

Example 2.6. Suppose m = 3 and n = 4. So we are considering the graph $G([t]: \mathbf{R}^3 \to \mathbf{R}^4)$, where $m \leq n$, and $m \neq 1$ or $m \neq 2$, as given in Theorem 2.5. Let $[T], [L] \in V$, such that [T] and [L] are not adjacent (ker $(T) \cap \text{ker} (L) = 0_{m=3}$). and $[T] \neq 0, [L] \neq 0$. Let $f \in [T]$, and $k \in [L]$. Since [T] and [L] are non-trivial vertices, then rank $(M_f) \neq m$ and rank $(M_k) \neq m$, where M_f and M_k are the standard matrix representations of f and k. Suppose,

$$M_{f} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{4 \times 3}, M_{k} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{4 \times 3}$$

Let $M_{fk} = \begin{bmatrix} M_f \\ M_k \end{bmatrix}_{8 \times 3}$

It can be easily seen that rank $(M_{fk}) = 3$, which implies that null $(M_{fk}) = 0$. Therefore, ker $(f) \cap ker(k) = 0$, that is the vertices [T] and [L] are not adjacent. We have:

 $\operatorname{rank}(M_f) = 2 = 3 - 1 = m - 1$, and $\operatorname{rank}(M_k) = 2 = 3 - 1 = m - 1$.

Then M_f has 2 independent rows R_1 and R_2 , such that $R_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ and $R_2 = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$. The vertices [T] and [L] are not adjacent, thus M_k has one row R, such that $\{R_1, R_2, R\}$ are independent and form a basis for \mathbf{R}^m , where m = 3. In this example, $R = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$. Let $K \neq R$ be a non-zero row in M_k , $K = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$. $K \in \text{rowspace}(M_k)$ and since $K \in \mathbf{R}^3$ it can be written as a linear combination of $\{R_1, R_2, R\}$ as follows:

$$K = 1.R_1 + 1.R_2 - R = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$$

Let
$$Y = K - (-1) \cdot R = K + R = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$
.
This implies $Y \in \text{rowspace}(M_k)$ and $Y \in \text{rowspace}(M_f)$. Let $M_d = \begin{bmatrix} Y \\ 0 \\ 0 \\ 0 \end{bmatrix}_{4 \times 3} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix}_{4\times 3}, be the standard matrix representation of some d \in [W].$

Since $Y \in \text{rowspace}(M_f)$, Y becomes a zero row through row operations using the rows in M_f . Thus $\text{null}(M_{fd}) \neq 0$ since $\text{rank}(M_{fd}) = 2$. Hence $\ker(T) \cap \ker(W) \neq 0$. Hence [T], [W] are adjacent. Similarly, since $Y \in \text{rowspace}(M_k)$, Y becomes a zero row through row operations using the rows in M_k . Hence $\text{null}(M_{kd}) \neq 0$ since $\text{rank}(M_{kd}) = 2$. Thus $\ker(L) \cap \ker(W) \neq 0$. Thus [W], [L] are adjacent. Therefore, we have [T] - [W] - [L].

Theorem 2.7. Consider the undirected graph $G_{m,n}$. Assume that $n < m \leq 2n$ and $m \neq 1$ or $m \neq 2$. Then $G_{m,n}$ is connected and $diam(G_{m,n}) = 2$.

Proof. Let $[T], [L] \in V$, such that [T] and [L] are not adjacent (ker $(T) \cap \text{ker}(L) = 0_m$), and $[T] \neq 0$, $[L] \neq 0$. Let, $f \in [T]$ and $k \in [L]$, then rank $(M_f) < m$ and rank $(M_k) < m$, where M_f and M_k are the standard matrix representations of f and k, with size $n \times m$.

Assume that $n + 1 < m \leq 2n$. Then rank $(M_f) = n - i$, where $i = 0, 1, 2, \ldots$, and rank $(M_k) = n - j$, where $j = 0, 1, 2, \ldots$. Thus we can choose any non-zero row from M_f or M_k , say Y, to form the $n \times m$ matrix M_d , where:

$$M_d = \begin{bmatrix} Y \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

is the standard matrix representation of some $d \in [W]$, such that [T] - [W] - [L].

Assume that m = n + 1. Then we have three cases. **Case I**. Assume that rank $(M_f) = n = m - 1$, and rank $(M_k) = n - j$, where j = 1, 2, ... Then we can choose any non-zero row, say Y from M_f , (Note that M_f is the matrix with the

higher rank), to form the $n \times m$ matrix M_d , where:

$$M_d = \left[\begin{array}{c} Y \\ 0 \\ \vdots \\ 0 \end{array} \right]$$

is the standard matrix representation of some $d \in [W]$, such that [T] - [W] - [L]. **Case II.** Assume that rank $(M_f) = n - i$, where i = 1, 2, ... and rank $(M_k) = n - j$, where j = 1, 2, ... In this case any non-zero row Y can be chosen either from M_f or M_k , to form M_d , where:

$$M_d = \begin{bmatrix} Y \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

. is the standard matrix representation of some $d \in [W]$, such that [T] - [W] - [L]. **Case III.** Assume that rank $(M_f) = n$ and rank $(M_k) = n$. Then M_f has n independent rows R_1, R_2, \ldots, R_n . Since [T] and [L] are not adjacent, M_k has one row say R such that, $\{R_1, R_2, \ldots, R_{m-1}, R\}$ is an independent set which forms a basis for $\mathbf{R}^m = \mathbf{R}^{n+1}$. Let $K \neq R$ be a non-zero row in M_k . Hence $K \in \mathcal{K}$ rowspace (M_k) . Since $K \in \mathbf{R}^{n+1}$, we have:

$$K = c_1 R_1 + c_2 R_2 + \dots + c_n R_n + c_{n+1} R$$

Let $Y = K - c_{n+1}R$. Hence $Y \in \text{rowspace}(M_k)$, (since both $K, c_{n+1}R \in \text{rowspace}(M_k)$),

and $Y \in \text{rowspace}(M_f)$. Let $M_d = \begin{bmatrix} Y \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, be the standard matrix represen-

tation of some $d \in [W]$.

Since $Y \in \text{rowspace}(M_f)$, Y becomes a zero row through row operations using the rows in M_f , null $(M_{fd}) \neq 0$ since rank $(M_{fd}) = n$. Hence ker $(T) \cap \text{ker}(W) \neq 0$. Thus [T], [W] are adjacent. Similarly, since $Y \in \text{rowspace}(M_k), Y$ becomes a zero row through row operations using the rows in M_k . Hence null $(M_{kd}) \neq 0$ since rank $(M_{kd}) = n$. Thus ker $(L) \cap \text{ker}(W) \neq 0$. Thus [W], [L] are adjacent. Therefore, we have [T] - [W] - [L].

Example 2.8. Suppose m = 4 and n = 3 and consider the graph $G_{4,3}$. Note that $n < m \leq 2n, m \neq 1, 2$ and and m = n+1. Thus m, n satisfy the given hypothesis in Theorem 2.7. Let $[T], [L] \in V$, such that [T] and [L] are not adjacent. Let $f \in [T]$, and $k \in [L]$. Then rank $(M_f) < m$ and rank $(M_k) < m$, where M_f and M_k are the standard matrix representations of f and k, with size $n \times m = 3 \times 4$. Suppose,

$$M_f = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{3 \times 4}, M_k = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{3 \times 4}$$

Let $M_{fk} = \begin{bmatrix} M_f \\ M_k \end{bmatrix}_{6 \times 4}$. It can be easily seen that rank $(M_{fk}) = 4$, which implies that null $(M_{fk}) = 0$. Therefore, ker $(f) \cap \text{ker}(k) = 0$, that is, the vertices [T] and

[L] are not adjacent. Hence rank $(M_f) = 3 = n$, and rank $(M_k) = 3 = n$. Then M_f has 3 independent rows R_1 , R_2 , and R_3 , such that $R_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$, $R_2 = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}$, and $R_3 = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$. The vertices [T] and [L] are not adjacent, thus M_k has one row, $R = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$, such that $\{R_1, R_2, R_3, R\}$ is an independent set which forms a basis for \mathbf{R}^4 . Let $K \neq R$ be a non-zero row in M_k , $K = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$. Since $K \in \text{rowspace}(M_k)$ and $K \in \mathbf{R}^4$, it can be written as a linear combination of $\{R_1, R_2, R_3, R\}$ as follows:

$$K = 0.R_{1} + 1.R_{2} + 0.R_{3} + (-1).R = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$$

Let, $Y = K - (-1).R = K + R = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}$
This implies $Y \in \text{rowspace}(M_{k})$ and $Y \in \text{rowspace}(M_{f})$. Let, $M_{d} = \begin{bmatrix} Y \\ 0 \\ 0 \end{bmatrix}_{3 \times 4}$
 $\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}$

 $\begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}_{3 \times 4}, be the standard matrix representation of some d \in [W].$

Since $Y \in \text{rowspace}(M_f)$, Y becomes a zero row through row operations using the rows in M_f . Thus $\text{null}(M_{fd}) \neq 0$, since $\text{rank}(M_{fd}) = 3$. Hence $\ker(T) \cap \ker(W) \neq 0$. Thus [T], [W] are adjacent. Similarly, since $Y \in \text{rowspace}(M_k)$, Y becomes a zero row through row operations using the rows in M_k . Thus $\text{null}(M_{kd}) \neq 0$ since $\operatorname{rank}(M_{kd}) = 3$. Hence $\ker(L) \cap \ker(W) \neq 0$. Thus [W], [L] are adjacent. Therefore, we have [T] - [W] - [L].

Theorem 2.9. Assume that $G_{m,n}$ is connected. Then $gr(G_{m,n}) = 3$.

Proof. $[T], [L] \in V$, such that [T] and [L] are adjacent, ker $(T) \cap \text{ker}(L) \neq 0$ and $[T] \neq 0, [L] \neq 0$. Let, $f \in [T]$ and $k \in [L]$, then M_f and M_k are the standard matrix representations of f and k with size $n \times m$. Suppose, that each matrix M_f and M_k , is composed of only one row, R_f and R_k that are independent of each other since f and k are in different equivalence classes [T] and [L]. M_f and M_k can be written as follows:

$$M_{f} = \begin{bmatrix} R_{f} \\ 0 \\ \vdots \\ 0 \end{bmatrix}_{n \times m}, M_{k} = \begin{bmatrix} R_{k} \\ 0 \\ \vdots \\ 0 \end{bmatrix}_{n \times}$$

Let $Y = R_f + R_k$. Since Y is a linear combination of two linearly independent rows, then the set $\{Y, R_f, R_k\}$ is also linearly independent.

Let $M_d = \begin{bmatrix} Y \\ 0 \\ \vdots \\ 0 \end{bmatrix}_{n \times m}$, be the standard matrix representation of some non-trivial

linear transformation d. Since Y is independent of both R_f and R_k , M_d is not rowequivalent to either M_f or M_k , hence d is in a different equivalence class from both f and k, say $d \in [W]$. Since ker $(T) \cap \ker(L) \neq 0$, we have null $(M_{fk}) \neq 0$, which implies null $(M_{fd}) \neq 0$ and null $(M_{kd}) \neq 0$. Therefore, we have, [T] - [L] - [W] - [T]. This forms the shortest possible cycle. Hence $gr(G_{m,n}) = 3$. **Acknowledgment** The second-named author would like to thank the Graduate Office at the American University of Sharjah for the continuous support.

References

- Abdulla, M., Badawi, A., On the dot product graph of a commutative ring II, 25 Int. Electron. J. Algebra 28, 61–175 (2020).
- [2] Akbari, S., Maimani, H. R., Yassemi, S.: When a zero-divisor graph is planar or a complete r-partite graph. J Algebra. 270, 169–180 (2003).
- [3] Akbari, S., Mohammadian, A., On the zero-divisor graph of a commutative ring. J Algebra. 274, 847-855 (2004).
- [4] Abbasi, A., Habib, S.: The total graph of a commutative ring with respect to proper ideals. J. Korean Math. Soc. 49, 85–98 (2012)
- [5] Akbari, S., Heydari, F.: The regular graph of a non-commutative ring. Bulletin of the Australian Mathematical Society (2013) Doi: 10.1017/S0004972712001177
- [6] Akbari, S., Aryapoor, M., Jamaali, M.: Chromatic number and clique number of subgraphs of regular graph of matrix algebras. Linear Algebra Appl. 436, 2419–2424 (2012).
- [7] Akbari, S., Jamaali, M., Seyed Fakhari, S.A.: The clique numbers of regular graphs of matrix algebras are finite. Linear Algebra Appl. 43, 1715—1718 (2009).
- [8] Akbari, S., Kiani, D., Mohammadi, F., Moradi, S.: The total graph and regular graph of a commutative ring. J. Pure Appl. Algebra 213, 2224-2228 (2009).
- [9] Anderson, D. D., Naseer, M., Beck's coloring of a commutative ring. J Algebra. 159, 500-514 (1993).
- [10] Anderson, D.F., Axtell, M., Stickles, J.: Zero-divisor graphs in commutative rings. In : Fontana, M., Kabbaj, S.E., Olberding, B., Swanson, I. (eds.) Commutative Algebra Noetherian and Non-Noetherian Perspectives, pp. 23-45. Springer-Verlag, New York (2010).
- [11] Anderson, D. F., Badawi, A.: "The Zero-Divisor Graph of a Commutative Semigroup: A Survey, DOI: 10.1007/978-3-319-51718-6_2." In Groups, Modules, and Model Theory Surveys and Recent Developments, edited by Manfred Droste, László Fuchs, Brendan Goldsmith, Lutz Strüngmann, 23-39. Germany/NewYork: Springer, 2017.
- [12] Anderson, D.F., Badawi, A.: On the zero-divisor graph of a ring. Comm. Algebra 36, 3073-3092 (2008).
- [13] Anderson, D.F., Badawi, A.: The total graph of a commutative ring. J. Algebra 320, 2706-2719 (2008).
- [14] Anderson, D.F., Badawi, A.: The total graph of a commutative ring without the zero element. J. Algebra Appl. (2012) doi: 10.1142/S0219498812500740.
- [15] Anderson, D.F., Badawi, A.: The generalized total graph of a commutative ring. J. Algebra Appl. (2013) doi: 10.1142/S021949881250212X.
- [16] Anderson, D.F., Fasteen, J., LaGrange, J.D.: The subgroup graph of a group. Arab. J. Math. 1, 17-27 (2012).
- [17] Anderson. D.F., Livingston, P.S.: The zero-divisor graph of a commutative ring. J. Algebra 217, 434-447 (1999). 434-447.
- [18] Anderson, D.F., Mulay, S.B.: On the diameter and girth of a zero-divisor graph. J. Pure Appl. Algebra 210, 543-550 (2007).
- [19] Afkhami, M., Khashyarmanesh, K., and Sakhdari, S. M.: The annihilator graph of a commutative semigroup, J. Algebra Appl. 14, (2015) [14 pages] DOI: 10.1142/S0219498815500152
- [20] Atani, S.E., Habibi, S.: The total torsion element graph of a module over a commutative ring. An. Stiint. Univ. Ovidius Constanta Ser. Mat. 19, 23-34 (2011).
- [21] Axtel, M, Coykendall, J. and Stickles, J. : Zero-divisor graphs of polynomials and power series over commutative rings, Comm.Algebra 33, 2043-2050 (2005).
- [22] Axtel, M., Stickles, J.: Zero-divisor graphs of idealizations. J. Pure Appl. Algebra 204, 235-243 (2006).
- [23] Badawi, A.: Recent results on annihilator graph of a commutative ring: A survey. In Nearrings, Nearfields, and Related Topics, edited by K. Prasad et al, (11 pages), New Jersey: World Scientific, 2017.
- [24] Badawi, A.: On the Total Graph of a Ring and Its Related Graphs: A Survey. In Commutative Algebra: Recent Advances in Commutative Rings, Integer-Valued Polynomials, and

Polynomial Functions, DOI 10.1007/978-1-4939-0925-4 3, edited by M. Fontana et al. (eds.), 39-54. New York: Springer Science, 2014.

- [25] Badawi, A., On the dot product graph of a commutative ring, Comm. Algebra 43, 43-50 (2015).
- [26] Badawi, A.: On the annihilator graph of a commutative ring, Comm. Algebra, Vol.(42)(1), 108-121 (2014), DOI: 10.1080/00927872.2012.707262.
- [27] Barati, Z., Khashyarmanesh, K., Mohammadi, F., Nafar, K.: On the associated graphs to a commutative ring. J. Algebra Appl. (2012) doi: 10.1142/S021949881105610.
- [28] Beck, I.: Coloring of commutative rings. J. Algebra 116, 208-226 (1988).
- [29] Bollaboás, B.: Graph Theory, An Introductory Course. Springer-Verlag, New York (1979).
- [30] Chelvam, T., Asir, T.: Domination in total graph on \mathbb{Z}_n . Discrete Math. Algorithms Appl. 3, 413-421 (2011).
- [31] Chelvam, T., Asir, T.: Domination in the total graph of a commutative ring. J. Combin. Math. Combin. Comput. 87, 147-158 (2013).
- [32] Chelvam, T., Asir, T.: Intersection graph of gamma sets in the total graph. Discuss. Math. Graph Theory 32, 339-354 (2012).
- [33] Chelvam, T., Asir, T.: On the Genus of the Total Graph of a Commutative Ring. Comm. Algebra 41, 142-153 (2013).
- [34] Chelvam, T., Asir, T.: On the total graph and its complement of a commutative ring. Comm. Algebra (2013) doi:10.1080/00927872.2012.678956.
- [35] Chelvam, T., Asir, T.: The intersection graph of gamma sets in the total graph I. J. Algebra Appl. (2013) doi: 10.1142/S0219498812501988.
- [36] Chelvam, T., Asir, T.: The intersection graph of gamma sets in the total graph II. J. Algebra Appl. (2013) doi: 10.1142/S021949881250199X.
- [37] Chiang-Hsieh, H.-J., Smith, N. O., Wang, H.-J.: Commutative rings with toroidal zerodivisor graphs. Houston J Math. 36, 1–31 (2010).
- [38] Coykendall, J., Sather-Wagstaff, S., Sheppardson, L., Spiroff, S.: On zero divisor graphs, Progress in Commutative Algebra 2: Closures, finiteness and factorization, edited by (C. Francisco et al. Eds.), Walter Gruyter, Berlin, (2012), 241–299.
- [39] DeMeyer, F., DeMeyer, L., Zero divisor graphs of semigroups: J. Algebra. 283, 190-198 (2005).
- [40] DeMeyer, F., McKenzie, T., Schneider, K.: The zero-divisor graph of a commutative semigroup. Semigroup Forum. 65, 206-214 (2002).
- [41] DeMeyer, F., Schneider, K., Automorphisms and zero divisor graphs of commutative rings. In: Commutative rings. Hauppauge, NY: Nova Sci. Publ.; 2002. p. 25–37.
- [42] DeMeyer, L., D'Sa, M., Epstein, I., Geiser, A., Smith, K., Semigroups and the zero divisor graph. Bull. Inst. Combin. Appl. 57, 60-70, (2009).
- [43] DeMeyer, L., Greve, L., Sabbaghi, A., Wang, J., The zero-divisor graph associated to a semigroup. Comm. Algebra. 38, 3370-3391 (2010).
- [44] Khashyarmanesh, K., Khorsandi, M.R.: A generalization of the unit and unitary Cayley graphs of a commutative ring. Acta Math. Hungar. 137, 242–253 (2012).
- [45] Maimani, H.R., Pouranki, M.R., Tehranian, A., Yassemi, S.: Graphs attached to rings revisited. Arab. J. Sci. Eng. 36, 997-1011 (2011).
- [46] Maimani, H. R., Pournaki, M. R., Yassemi, S., Zero-divisor graph with respect to an ideal. Comm. Algebra. 34, 923-929 (2006).
- [47] Maimani, H.R., Wickham, C., Yassemi, S.: Rings whose total graphs have genus at most one. Rocky Mountain J. Math. 42, 1551-1560 (2012).
- [48] Mojdeh1, D. A., Rahimi, A. M: Domination sets of some graphs associated to commutative ring. Comm. Algebra 40, 3389–3396 (2012).
- [49] Mulay, S. B.: Cycles and symmetries of zero-divisors. Comm Algebra. 30, 3533-3558 (2002).
- [50] Nikandish, R., Nikmehr, M. J., Bakhtyiari, M.: Coloring of the annihilator graph of a commutative ring, J. Algebra Appl. 15(07) (2016). DOI: 10.1142/S0219498816501243
- [51] Pucanović, Z., Petrović, Z.: On the radius and the relation between the total graph of a commutative ring and its extensions. Publ. Inst. Math.(Beograd)(N.S.) 89, 1-9 (2011).
- [52] Redmond, S. P., An ideal-based zero-divisor graph of a commutative ring. Comm Algebra. 31, 4425–4443 (2003).
- [53] Smith, N. O: Planar zero-divisor graphs, Comm. Algebra 35, 171-180 (2007).

- [54] Sharma, P.K., Bhatwadekar, S.M.: A note on graphical representations of rings. J. Algebra 176, 124-127 (1995).
- [55] Shekarriz, M.H., Shiradareh Haghighi, M.H., Sharif, H.: On the total graph of a finite commutative ring. Comm. Algebra 40, 2798-2807 (2012).
- [56] Visweswaran, S., Patel, H. D.: A graph associated with the set of all nonzero annihilating ideals of a commutative ring, Discrete Math. Algorithm. Appl. 06, (2014) [22 pages] DOI: 10.1142/S1793830914500475
- [57] Wickham, C.: Classification of rings with genus one zero-divisor graphs. Comm Algebra. 36, 325–345 (2008).

DEPARTMENT OF MATHEMATICS & STATISTICS, THE AMERICAN UNIVERSITY OF SHARJAH, P.O. Box 26666, Sharjah, United Arab Emirates *Email address*: abadawi@aus.edu

Department of Mathematics & Statistics, The American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates

 $Email \ address: \ {\tt g00007313@alumni.aus.edu}$